Crystal and Molecular Structure of Alnuserol, a New 11-Hydroxylated C₃₁ Dammarane-type Triterpene from Alnus serrulatoides ¹

By Toshifumi Hirata and Takayuki Suga,* Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Hiroshima 730, Japan

The molecular structure and absolute configuration of alnuserol, (1), a novel 11-hydroxylated C₃₁ dammarane-type triterpene from Alnus serrulatoides Call., were determined to be (11R,20S,24R)-20,24-epoxy-11-hydroxy-24methyldammaran-3-one (1) by a combination of spectroscopic and X-ray crystallographic methods. Crystals are orthorhombic, space group $P2_12_12_1$, a = 6.599(2), b = 14.921(3), c = 28.443(8) Å, Z = 4. The structure was determined from diffractometer data by direct methods and refined by full-matrix least-squares techniques to R 0.054 for 2 064 reflections.

In contrast to many examples of 11-hydroxylated steroids in animals and micro-organisms,² 11-hydroxylated triterpenoids rarely occur in higher plants.³⁻⁵ We

TABLE 1

Final atomic parameters (\times 10⁴), with standard deviations in parentheses

Atom	x	у	z
C(1)	4 160(62)	4 699(58)	7 688(54)
C(2)	4 983(79)	5 603(64)	7 532(78)
C(3)	3 735(62)	6 4 05(60)	7 643(61)
C(4)	2 958(63)	6 480(57)	8 142(56)
C(5)	2 733 (58)	5 535(54)	8 374(52)
C(6)	$1\ 294(65)$	5 555(58)	8 798(57)
C(7)	1402(66)	4 680(57)	9 067(53)
C(8)	789(53)	3 866(54)	8 768(49)
C(9)	$2\ 094(53)$	3838(52)	8 303(47)
C(10)	2 259(55)	4761(53)	8 022(48)
C(11)	1 452(60)	3 023(57)	8 008(47)
C(12)	1597(63)	$2\ 135(55)$	8 272(49)
C(13)	477(56)	$2\ 174(52)$	8 742(46)
C(14)	$1\ 185(54)$	2976(55)	$9\ 039(45)$
C(15)	-54(74)	2822(61)	9 491(52)
C(16)	-54(74)	1 789(60)	$9\ 561(53)$
C(17)	602(61)	$1\ 368(54)$	$9\ 083(51)$
C(18)	-1512(62)	3 966(60)	8 665(59)
C(19)	386(63)	4 940(64)	7 713(54)
C(20)	-572(69)	516(60)	8 953(59)
C(21)	-2731(80)	699(75)	8 800(86)
C(22)	528(86)	-76(65)	8 597(60)
C(23)	1 936(86)	-617(66)	8 905(68)
C(24)	720(75)	-765(56)	9 356(63)
C(25)	2068(87)	-684(73)	9 803(68)
C(26)	865(111)	-739(93)	$10\ 252(76)$
C(27)	3 852(132)	-1 336(108)	9818(103)
C(28)	4 594(84)	7 021(70)	· 8 409(70)
C(29)	991(75)	7 046(68)	8 140(66)
C(30)	$3\ 473(61)$	2870(61)	$9\ 179(53)$
C(31)	-513(114)	-1 645(72)	$9\ 325(88)$
O(1)	$3\ 428(47)$	6 990(43)	7 347(41)
O(2)	2 609(47)	$2 \ 932(40)$	7 578(33)
O(3)	-678(44)	-38(40)	9 370(40)

now have isolated a novel 11-hydroxylated C₃₁ dammarane-type triterpene, alnuserol, from the male flowers of Alnus serrulatoides Call. Alnuserol (1), C₃₁H₅₂O₃, had u.v., i.r., and ¹H and ¹³C n.m.r. spectral characteristics typical of a non-conjugated carbonyl and a secondary hydroxyl-group, two further quaternary carbon atoms bearing an oxygen atom (probably an ether), and nine methyl groups. The mass spectrum included ions at

¹ For a preliminary account of this work see T. Hirata, K. Murai, and T. Suga, *Chem. Lett.*, 1977, 95. ² E. Heftmann, 'Steroid Biochemistry,' Academic Press,

New York, 1970.

³ A. A. Newmann, 'Chemistry of Terpenes and Terpenoids,'
 Academic Press, New York, 1972, p. 239.
 ⁴ S. Imai, E. Murata, S. Fujioka, M. Koreeda, and K. Nakan-

ishi, Chem. Comm., 1969, 546.

m/e 141 (base peak), 123, and 43 suggesting a relationship with alnincanone (2).⁶ The complete structure (1) was

(2) R = H

determined by an X-ray crystallographic study. Final atomic co-ordinates, bond lengths, and angles are given

TABLE 2 Interatomic distances (Å), with standard deviations in parentheses

	in paro	ii cii cooco	
C(1) - C(2)	1.554(12)	C(11) - O(2)	1.439(8)
C(1) - C(10)	1.586(10)	C(12) - C(13)	1.530(9)
C(2) - C(3)	1.483(12)	C(13) - C(14)	1.550(9)
C(3) - C(4)	1.506(11)	C(13) - C(17)	1.562(10)
C(3) - O(1)	1.246(9)	C(14) - C(15)	1.546(10)
C(4) - C(5)	1.554(10)	C(14) - C(30)	1.575(10)
C(4) - C(28)	1.553(12)	C(15) - C(16)	1.566(11)
C(4) - C(29)	1.552(11)	C(16)–C(17)	1.549(11)
C(5) - C(6)	1.519(10)	C(17) - C(20)	1.531(11)
C(5) - C(10)	1.583(10)	C(20) - C(21)	1.508(13)
C(6) - C(7)	1.552(10)	C(20) - C(22)	1.519(12)
C(7) - C(8)	1.527(10)	C(20) - O(3)	1.458(9)
C(8) - C(9)	1.562(9)	C(20) - C(23)	1.530(13)
C(8) - C(14)	1.554(9)	C(23) - C(24)	1.500(12)
C(8) - C(18)	1.561(10)	C(24) - C(25)	1.592(12)
C(9) - C(10)	1.618(9)	C(24) - C(31)	1.568(13)
C(9) - C(11)	1.534(9)	C(24) - O(3)	1.421(10)
C(10) - C(19)	1.514(10)	C(25) - C(26)	1.516(15)
C(11) - C(12)	1.554(10)	C(25) - C(27)	1.496(17)
/			

in Tables 1-3. The structure of the molecule is shown in the Figure. Since the o.r.d. and the c.d. curves of alnuserol exhibited a positive Cotton effect (cf. alnincanone) 7-9 and a positive maximum, respectively, the absolute configuration is as given in (1). It was also

⁵ T. Takemoto, S. Arihara, T. Nakajima, M. Okuhira, and A. ^a I. Takemoto, S. Arhara, T. Nakajina, M. Okuma, and A. Hamada, pre-print of '20th Symposium Chemistry of Natural Prods.,' Sendai, 1976, p. 288.
^a A. Ryabinin, L. H. Matyukhina, I. A. Saltikova, F. Patil, and G. Ourisson, Bull. Soc. chim. France, 1968, 1089.
^r R. Labriola and G. Ourisson, Tetrahedron, 1973, 29, 2105.

R. Labriota and G. Ourisson, 1 etranearon, 1973, 29, 2105.
⁸ J.-F. Biellmann, Bull. Soc. chim. France, 1967, 3459.
⁹ W. Moffitt, R. B. Woodward, A. Moscowitz, W. Klyne, and C. Djerassi, J. Amer. Chem. Soc., 1961, 83, 4013.

found that the molecules are packed along the a axis, and are linked by O(OH) $\sim \sim O(CO)$ intermolecular hydrogen

TABLE 3

Bond angles (°), with standard deviations in parentheses

C(2) - C(1) - C(10)	112.2(6)	C(11)-C(12)-C(13)	110.0(5
C(1) - C(2) - C(3)	116.8(7)	C(12) - C(13) - C(14)	111.4(5
C(2) - C(3) - C(4)	116.8(7)	C(12) - C(13) - C(17)	118.7(6
C(2) - C(3) - O(1)	121.3(7)	C(14) - C(13) - C(17)	103.6(5
C(4) - C(3) - O(1)	121.9(7)	C(8) - C(14) - C(13)	110.2(5
C(3) - C(4) - C(5)	111.3(6)	C(8) - C(14) - C(15)	117.2(5
C(3) - C(4) - C(28)	104.8(6)	C(8) - C(14) - C(30)	111.1(5
C(3) - C(4) - C(29)	108.4(6)	C(13) - C(14) - C(15)	100.5(5
C(5) - C(4) - C(28)	109.1(6)	C(13) - C(14) - C(30)	110.8(5
C(5) - C(4) - C(29)	114.5(6)	C(15) - C(14) - C(30)	106.5(5
C(28) - C(4) - C(29)	108.2(6)	C(14) - C(15) - C(16)	104.4(6
C(4) - C(5) - C(6)	112.0(6)	C(15) - C(16) - C(17)	106.9(6
C(4) - C(5) - C(10)	113.6 (6)	C(13) - C(17) - C(16)	103.3(6
C(6) - C(5) - C(10)	112.8(6)	C(13) - C(17) - C(20)	116.7(6
C(5) - C(6) - C(7)	110.3(6)	C(16) - C(17) - C(20)	115.5(6
C(6) - C(7) - C(8)	111.9(6)	C(17) - C(20) - C(21)	113.5(7
C(7) - C(8) - C(9)	111.2(5)	C(17) - C(20) - C(22)	114.1(7
C(7) - C(8) - C(14)	110.6(5)	C(17) - C(20) - O(3)	107.3(6
C(7) - C(8) - C(18)	106.8(6)	C(21) - C(20) - C(22)	111.9(7
C(9) - C(8) - C(14)	107.6(5)	C(21) - C(20) - O(3)	105.9(7
C(9) - C(8) - C(18)	111.9(5)	C(22)-C(20)-O(3)	103.1(6
C(14) - C(8) - C(18)	108.7(5)	C(20) - C(22) - C(23)	102.5(7
C(8) - C(9) - C(10)	115.5(5)	C(22) - C(23) - C(24)	103.3(7
C(8) - C(9) - C(11)	110.5(5)	C(23) - C(24) - C(25)	111.0(7
C(10) - C(9) - C(11)	114.3(5)	C(23) - C(24) - C(31)	111.2(7
C(1) - C(10) - C(5)	105.8(5)	C(23) - C(24) - O(3)	106.1(7
C(1) - C(10) - C(9)	106.0(5)	C(25)-C(24)-C(31)	114.1(7
C(1) - C(10) - C(19)	108.6(6)	C(25)-C(24)-O(3)	107.3(6
C(5)-C(10)-C(9)	108.2(5)	C(31)-C(24)-O(3)	106.7(7
C(5)-C(10)-C(19)	114.4(6)	C(24) - C(25) - C(26)	111.0(8
C(9)-C(10)-C(19)	113.3(6)	C(24)-C(25)-C(27)	112.5(8
C(9) - C(11) - C(12)	113.7(5)	C(26)-C(25)-C(27)	110.5(9
C(9) - C(11) - O(2)	113.8(5)	C(23) - O(3) - C(24)	111.7(6
C(12)-C(11)-O(2)	110.0(5)		•

Molecular structure of alnuserol (1) showing the atom numbering system used. Atoms are carbon unless labelled otherwise

TABLE 4

Intermolecular separations (<3.5 Å)

$C(29) \cdot \cdot \cdot O(2I)$	3.396	$O(2) \cdot \cdot \cdot C(29III)$	3.396
$C(3) \cdots O(2^{II})$	3.388	$O(2) \cdots C(3^{III})$	3.388
$O(1) \cdots O(2^{II})$	2.982	$O(2) \cdots O(1w)$	2.982

Roman numeral superscripts refer to the following transformations of the atomic co-ordinates:

bonds [with C(11)-OH $\cdot \cdot \cdot O$ 116.4°, O $\cdot \cdot \cdot O$ 2.98 Å, and O-H 0.96 Å] around the 2₁ screw axis in the *b* direction. Intermolecular distances are listed in Table 4. Thus, the structure of alnuserol has been established to be (11*R*,20*S*,24*R*)-20,24-epoxy-11-hydroxy-24methyldammaran-3-one (1).

EXPERIMENTAL

Mass spectra were recorded on a Hitachi RMS 4 mass spectrometer at 70 eV. ¹H N.m.r. spectra were taken with a Varian T 60 spectrometer, with tetramethylsilane as internal standard. The natural-abundance ¹³C n.m.r. spectrum was determined with a JEOL JNM FX 100 spectrometer operating at 15.1 MHz. The crystallographic analysis was performed on a Syntex $P2_1$ diffractometer.

Extraction and Isolation.—The male flowers (10.3 kg) of Alnus serrulatoides Call. were immersed in acetone at room temperature for 2 months. The acetone solution on removal of solvent gave a brown viscous syrup, which was extracted with ether to give a viscous oil (66.7 g). A portion (10.0 g)of the oil was subjected to chromatographic separation to give alnuserol (1) (120 mg), m.p. 211-212 °C; $[\alpha]_{D}^{25}+260^{\circ}$ (c 0.20, EtOH); λ_{max} (MeOH) 290 nm (ε 22.9); ν_{max} (CCl₄) 3 621 (free OH) and 1 706 cm⁻¹ (C=O); ¹H n.m.r. δ (CDCl₃) 0.9–1.2 (9 × Me) and 3.97 [1 H, m, C(11)–H]; ¹³C n.m.r. δ (CDCl₃) 218.7 (s, C-3), 85.3 (s, C-20 and C-24), 71.1 (d, C-11), and 27.5, 25.1, 23.0, 20.8, 18.8, 17.6, 16.8, 16.3, and 16.1 (q, $9 \times \text{Me}$); m/e (rel. intensity) 472 (M^+ ; 0.5), 454 (2), 436 (6), 141 (100), 123 (49), and 43 (29); o.r.d. (c 0.33, MeOH) $[\phi]_{400}$ 1 070, $[\phi]_{304}$ 5 470, $[\phi]_{269}$ –2 150, $[\phi]_{230}$ 1 290; c.d. (c 0.33, MeOH) $[\theta]_{289}$ 955 (Found: C, 78.90; H, 11.10. $C_{31}H_{52}O_3$ requires C, 78.76; H, 11.09%). The acetate derivative: ν_{max} (Nujol) 1 738 (OAc), 1 711 (C=O), and 1 236 cm⁻¹ (C=O); ¹H n.m.r. δ (CDCl₃) 0.9—1.1 $(9 \times Me)$, 2.00 (2 H, s, OAc), and 5.20 [1 H, m, C(11)-H].

Crystallographic Measurements.—Single crystals of alnuserol (1) were obtained from hexane-ethyl acetate (9:1). Cell dimensions were derived by least-squares calculations from 20 values of 13 well-centred, resolved $\text{Cu-}K_{\alpha}$ diffraction peaks. Of 2 262 reflections collected on a four-circle automatic diffractometer by use of $\text{Cu-}K_{\alpha}$, 198 had $I < 1.96\sigma(I)$ and were not used in the refinement.

Crystal Data.—C₃₁H₅₂O₃, M = 472.75. Orthorhombic, a = 6.599(2), b = 14.921(3), c = 28.443(8) Å, U = 2800.6Å³, $D_c = 1.119$ g cm⁻³, Z = 4, $D_m = 1.07$ g cm⁻³. Cu- K_{α} radiation, $\lambda = 1.5418$ Å; μ (Cu- K_{α}) = 5.3 cm⁻¹. Space group $P2_12_12_1$.

Structure Analysis and Refinement.—The structure factors were put on an absolute scale by the method of Wilson ¹⁰ $(B = 5.11 \text{ Å}^2)$ and normalized structure factors $|E_{hkl}|$ were then obtained by using the overall temperature parameter. The phases of 251 strong reflections with |E| > 1.51 were determined by direct methods, by use of the program MULTAN.¹¹ The E map for the best solution yielded positions for all 34 non-hydrogen atoms. The structure was refined by full-matrix least-squares methods. The weighting function used in the calculations was of the form w = A, where A = 1 if $|F_o| \ge 3.0$ or A = 0.5 if $|F_o| < 3.0$. An initial structure-factor calculation gave R 0.31 and subsequent least-squares calculations with isotropic thermal parameters for non-hydrogen atoms lowered R to 0.095.

¹⁰ A. J. Wilson, Nature, 1942, 150, 151.

¹¹ G. Germain, P. Main, and M. M. Woolfson, Acta. Cryst., 1971, **A27**, 368. Anisotropic refinement for carbon and oxygen atoms and isotropic refinement for hydrogen atoms reduced R finally to 0.054. Observed and calculated structure factors, anisotropic thermal parameters, atom parameters of hydrogen atoms, o.r.d. curves for (1) and (2), and a view of the crystal structure of (1) along the a axis are listed in Supple-

mentary Publication No. SUP 22177 (14 pp., 1 micro-fiche).*

[7/1234 Received, 12th July, 1977]

* See Notice to Authors No. 7 in J.C.S. Perkin II, 1977, Index issue.